
ar
X

iv
:1

90
4.

09
82

8v
2

 [
cs

.A
I]

 2
3

A
pr

 2
01

9

Magic: The Gathering is Turing Complete

Alex Churchill

Independent Researcher

Cambridge, United Kingdom

alex.churchill@cantab.net

Stella Biderman

Georgia Institute of Technology

Atlanta, United States of America

stellabiderman@gatech.edu

Austin Herrick

University of Pennsylvania

Philadelphia, United States of America

aherrick@wharton.upenn.edu

Abstract—Magic: The Gathering is a popular and famously
complicated trading card game about magical combat. In this
paper we show that optimal play in real-world Magic is at
least as hard as the Halting Problem, solving a problem that
has been open for a decade [1], [10]. To do this, we present a
methodology for embedding an arbitrary Turing machine into a
game of Magic such that the first player is guaranteed to win the
game if and only if the Turing machine halts. Our result applies
to how real Magic is played, can be achieved using standard-
size tournament-legal decks, and does not rely on stochasticity
or hidden information. Our result is also highly unusual in that
all moves of both players are forced in the construction. This
shows that even recognising who will win a game in which neither
player has a non-trivial decision to make for the rest of the game
is undecidable. We conclude with a discussion of the implications
for a unified computational theory of games and remarks about
the playability of such a board in a tournament setting.

I. INTRODUCTION

Magic: The Gathering (also known as Magic) is a popular

trading card game owned by Wizards of the Coast. Formally, it

is a two-player zero-sum stochastic card game with imperfect

information, putting it in the same category as games like

poker and hearts. Unlike those games, players design their

own custom decks out of a card-pool of over 20,000 cards.

Magic’s multifaceted strategy has made it a popular topic in

artificial intelligence research.

In this paper, we examine Magic: The Gathering from the

point of view of algorithmic game theory, looking at the

computational complexity of evaluating who will win a game.

As most games have finite limits on their complexity (such

as the size of a game board) most research in algorithmic

game theory of real-world games has primarily looked at

generalisations of commonly played games rather than the

real-world versions of the games. A few real-world games have

been found to have non-trivial complexity, including Dots-and-

Boxes, Jenga and Tetris [8]. We believe that no real-world

game is known to be harder than NP previous to this work.

Even when looking at generalised games, very few examples

of undecidable games are known. On an abstract level, the

Team Computation Game [9] shows that some games can be

undecidable, if they are a particular kind of team game with

imperfect information. The authors also present an equivalent

construction in their Constraint Logic framework that was used

by Coulombe and Lynch (2018) [7] to show that some video

games, including Super Smash Bros Melee and Mario Kart,

have undecidable generalisations. Constraint Logic is a highly

successful and highly flexible framework for modelling games

as computations.

The core of this paper is the construction presented in

Section IV: a universal Turing machine embedded into a game

of Magic: The Gathering. As we can arrange for the victor

of the game to be determined by the halting behaviour of

the Turing machine, this construction establishes the following

theorem:

Theorem 1: Determining the outcome of a game of Magic:

The Gathering in which all remaining moves are forced is

undecidable.

A. Previous Work

Prior to this work, no undecidable real games were known

to exist. Demaine and Hearn (2009) [10] note that almost every

real-world game is trivially decidable, as they produce game

trees with only computable paths. They further note that Rengo

Kriegspiel1 is “a game humans play that is not obviously

decidable; we are not aware of any other such game.” It

is conjectured by Auger and Teytaud (2012) [1] that Rengo

Kriegspiel is in fact undecidable, and it is posed as an open

problem to demonstrate any real game that is undecidable.

The approach of embedding a Turing machine inside a

game directly is generally not considered to be feasible for

real-world games [10]. Although some open-world sandbox

games such as Minecraft and Dwarf Fortress can support

the construction of Turing machines, those machines have no

strategic relevance and those games are deliberately designed

to support large-scale simulation. In contrast, leading formal

theory of strategic games claims that the unbounded memory

required to simulate a Turing machine entirely in a game

would be a violation of the very nature of a game [9].

The computational complexity of Magic: The Gathering in

has been studied previously by several authors. Our work is

inspired by [4], in which it was shown that four-player Magic

can simulate a Turing machine under certain assumptions

about player behaviour. In that work, Churchill conjectures

that these limitations can be removed and preliminary work

along those lines is discussed in [5]. The computational

complexity of checking the legality of a particular decision

in Magic (blocking) is investigated in [3] and is found to

be coNP-complete. There have also been a number of papers

1Rengo Kriegspiel is a combination of two variations on Go: Rengo, in
which two players play on a team alternating turns, and Shadow Go, in which
players are only able to see their own moves.

http://arxiv.org/abs/1904.09828v2

investigating algorithmic and artificial intelligence approaches

to playing Magic, including Ward and Cowling (2009) [15],

Cowling et al. (2012) [6], and Esche (2018) [11]. Esche (2018)

briefly considers the theoretical computational complexity of

Magic and states an open problem that has a positive answer

only if Magic end-games are decidable.

B. Our Contribution

This paper completes the project started by Churchill [4]

and continued by Churchill et al. [5] of embedding a universal

Turing machine in Magic: The Gathering such that determin-

ing the outcome of the game is equivalent to determining the

halting of the Turing machine. This is the first result showing

that there exists a real-world game for which determining

the winning strategy is non-computable, answering an open

question of Demaine and Hearn [10] and Auger and Teytaud

[1] in the positive. This result, combined with Rice’s Theorem

[13], also answers an open problem from Esche [11] in the

negative by showing that the equivalence of two strategies for

playing Magic is undecidable.

This result raises important foundational questions about

the nature of a game itself. As we have already discussed, the

leading formal theory of games holds that this construction

is unreasonable, if not impossible, and so a reconsideration

of those assumptions is called for. In section V-A we discuss

additional foundational assumptions of Constraint Logic that

Magic: The Gathering violates, and present our interpretation

of the implications for a unified theory of games.

C. Overview

The paper is structured as follows. In Section II we provide

background information on this work, including previous work

on Magic Turing machines. In Section III we present a sketch

of the construction and its key pieces. In Section IV we provide

the full construction of a universal Turing machine embedded

in a two-player game of Magic. In Section V we discuss the

game-theoretic and real-world implications of our result.

II. PRELIMINARIES

One initial challenge with Magic: The Gathering is the

encoding of information. Some cards ask players to choose

a number. Although rules for how to specify a number are not

discussed in the Comprehensive Rules [16], convention is that

players are allowed to specify numbers in any way that both

players can agree to. For example, you are allowed to choose

the number 2100 or ⌈log 177⌉. This presents an issue brought

to our attention by Fortanely [12]. Consider the following

situation: both players control Lich, Transcendence, and

Laboratory Maniac. One player then casts Menacing Ogre.

The net effect of this play is the “Who Can Name the Bigger

Number” game – whoever picks the biggest number wins on

the spot. This makes identifying the next board state non-

computable [2], so we require that any numbers specified by

a player must be expressed in standard binary notation.

We believe that with this restriction Magic: The Gathering is

transition-computable, meaning that the function that maps a

board state and a move to the next board state is computable2.

However, it is unclear how to prove this beyond exhaustive

analysis of the over 20,000 cards in the game. We leave that

question open for future work:

Conjecture 1: The function that takes a board state and

a legal move and returns the next board state in Magic: The

Gathering is computable.

In this conjecture we say “a legal move” because it is also not

obvious that checking to see if a move is legal is computable.

Chatterjee and Ibsen-Jensen [3] show that checking the legality

of a particular kind of game action is coNP-complete, but the

question has not been otherwise considered. Again, we leave

this for future work:

Conjecture 2: There does not exist an algorithm for

checking the legality of a move in Magic: The Gathering.

A. Previous Magic Turing Machines

In [4], the author presents a Magic: The Gathering end-

game that embeds a universal Turing machine. However, this

work has a major issue: it’s not quite deterministic. At several

points in the simulation, players have the ability to stop the

computation at any time by opting to decline to use effects that

say “may.” For example, Kazuul Warlord reads “Whenever

Kazuul Warlord or another Ally enters the battlefield under

your control, you may put a +1/ + 1 counter on each Ally

you control.” Declining to use this ability will interfere with

the Turing machine, either causing it to stop or causing it

to perform a different calculation from the one intended.

The construction as given in Churchill [4] works under the

assumption that all players that are given the option to do

something actually do it, but as the author notes it fails without

this assumption. Attempts to correct this issue are discussed

in Churchill et al. [5].

In this work, we solve this problem by reformulating the

construction to exclusively use cards with mandatory effects.

We also substantially simplify the most complicated aspect

of the construction, the recording of the tape, and reduce the

construction from one involving four players to one involving

two, and which only places constraints on one player’s deck,

matching the format in which Magic is most commonly played

in the real world (two-player duels). Like the previous work,

we will embed Rogozhin’s (2, 18) universal Turing machine

[14].

III. AN OVERVIEW OF THE CONSTRUCTION

In this section we give a big picture view of the Turing

machine, with full details deferred to the next section. The

two players in the game are named Alice and Bob.

To construct a Turing machine in Magic: The Gathering

requires three main elements: the tape which encodes the

computation, the controller which determines what action to

take next based on the current state and the last read cell, and

the read/write head which interacts with the tape under the

control of the controller.

2We avoid the term “computable game” which is more commonly used to
mean that the game has a computable winning strategy.

2

A. The Tape

As the rules of Magic: The Gathering do not contain any

concept of geometry or adjacency, encoding the tape itself

is tricky. Our solution is to have many creature tokens with

carefully controlled power and toughness, with each token’s

power and toughness representing the distance from the head

of the Turing machine. The tape to the left of the Turing

machine’s current read head position is represented by a

series of creature tokens which all have the game colour

green, while the tape to the right is represented by white

tokens. Our distance-counting starts at 2, so there is one 2/2

token representing the space currently under the head of the

Turing machine; a green 3/3 token represents the tape space

immediately to the left of the Turing head, a green 4/4 is

the space to the left of that, and so on. Rogozhin’s universal

Turing machine starts with the read head in the middle of the

tape [14].

To represent the symbols on the tape, we use creature types.

We choose 18 creature types from the list of creature types in

Magic to correspond to the 18 symbols in Rogozhin’s (2, 18)

UTM. We can choose these creature types to begin with suc-

cessive letters of the alphabet: Aetherborn, Basilisk, Cephalid,

Demon, Elf, Faerie, Giant, Harpy, Illusion, Juggernaut, Kavu,

Leviathan, Myr, Noggle, Orc, Pegasus, Rhino, and Sliver. For

example, a green 5/5 Aetherborn token represents that the 1st

symbol is written on the 3rd cell to the left of the head, and a

white 10/10 Sliver represents that the 18th symbol is written

on the 9th cell to the right of the head. These tokens are all

controlled by Bob, except the most recently created token (the

space the Turing head has just left) which is controlled by

Alice.

B. The Controller

Control instructions in a Turing machine are represented by

a table of conditional statements of the form “if the machine

is in state s, and the last read cell is symbol k, then do such-

and-such.” Many Magic cards have triggered abilities which

can function like conditional statements. The two we shall use

are Rotlung Reanimator (“Whenever Rotlung Reanimator or

another Cleric dies, create a 2/2 black Zombie creature token”)

and Xathrid Necromancer (“Whenever Xathrid Necromancer

or another Human creature you control dies, create a tapped

2/2 black Zombie creature token”). We will use both, and the

difference between tapped and untapped creature tokens will

contribute to the design of the Turing machine.

Each Rotlung Reanimator3 needs to trigger from a dif-

ferent state being read – that is, a different creature type

dying – and needs to encode a different result. Fortunately,

Magic includes cards that can be used to edit the text of other

cards. The card Artificial Evolution is uniquely powerful for

our purposes, as it reads “Change the text of target spell or

permanent by replacing all instances of one creature type with

another. The new creature type can’t be Wall. (This effect

3For now we will speak about Rotlung Reanimator for simplicity. Some of
these will in fact be Xathrid Necromancers as explained in the next section.

lasts indefinitely.)” So we create a large number of copies

of Rotlung Reanimator and edit each one. A similar card

Glamerdye can be used to modify the colour words within

card text.

Thus, we edit a Rotlung Reanimator by casting two copies

of Artificial Evolution replacing ‘Cleric’ with ‘Aetherborn’

and ‘Zombie’ with ‘Sliver’ and one copy of Glamerdye to

replace ‘black’ with ‘white’, so that this Rotlung Reani-

mator now reads “Whenever Rotlung Reanimator or another

Aetherborn dies, create a 2/2 white Sliver creature token”4.

This Rotlung Reanimator now encodes the first rule of the

q1 program of the (2, 18) UTM: “When reading symbol 1

in state A, write symbol 18 and move left.” The Aetherborn

creature token represents symbol 1, the Sliver creature token

represents symbol 18, and the fact that the token is white leads

to processing that will cause the head to move left.

We similarly have seventeen more Rotlung Reanimators

encoding the rest of the q1 program from [14]. Between them

they say:

1) Whenever an Aetherborn dies, create a 2/2 white Sliver.

2) Whenever a Basilisk dies, create a 2/2 green Elf.

Whenever a . . . dies, create a 2/2 . . .
18) Whenever a Sliver dies, create a 2/2 green Cephalid.

See Table II for the full encoding of the program.

C. The Read/Write Head

The operation “read the current cell of the tape” is rep-

resented in-game by forcing Alice to cast Infest to give all

creatures −2/−2. This causes the unique token with 2 toughness

to die. It had a colour (green or white) which is irrelevant,

and a creature type which corresponds to the symbol written

on that cell. That creature type is noticed by a Rotlung

Reanimator, which has a triggered ability that is used to carry

out the logic encoded in the head of the Turing machine. It

produces a new 2/2 token, containing the information written

to the cell that was just read.

The Turing machine then moves either left or right and

modifies the tokens to keep the tape in order by adding

+1/+ 1 counters to all tokens on one side of the head and

−1/−1 counters to all tokens on the other side. Moving left or

right will be accomplished by casting first Cleansing Beam

and then Soul Snuffers.

D. Adding a Second State

Everything described so far outlines the operation of one

state of the Turing machine. However, our Turing machine

requires two states. To accomplish this, we leverage phasing:

an object with phasing can ‘phase in’ or ‘phase out’, and

while it’s phased out, it’s treated as though it doesn’t exist.

We can grant phasing to our Rotlung Reanimators using the

enchantment Cloak of Invisibility (“Enchanted creature has

phasing and can’t be blocked except by Walls”) and create a

second set of Rotlung Reanimators to encode the program

4Throughout this paper, card text that has been modified using cards such
as Artificial Evolution is written in italics.

3

TABLE I
GAME STATE WHEN THE (2, 18) UTM BEGINS

Card Controller Changed text / choices / attachment

29 Rotlung Reanimator Bob See Table II
7 Xathrid Necromancer Bob See Table II
29 Cloak of Invisibility Alice attached to each Rotlung Reanimator
7 Cloak of Invisibility Alice attached to each Xathrid Necromancer
Wheel of Sun and Moon Alice attached to Alice
Illusory Gains Alice attached to latest tape token
Steely Resolve Alice Assembly-Worker

2 Dread of Night Alice Black

Fungus Sliver Alice Incarnation
Rotlung Reanimator Alice Lhurgoyf, black, Cephalid

Rotlung Reanimator Bob Lhurgoyf, green, Lhurgoyf

Shared Triumph Alice Lhurgoyf

Rotlung Reanimator Alice Rat, black, Cephalid
Rotlung Reanimator Bob Rat, white, Rat

Shared Triumph Alice Rat

Card Controller

Wild Evocation Bob
Recycle Bob
Privileged Position Bob
Vigor Alice
Vigor Bob
Mesmeric Orb Alice
Ancient Tomb Alice
Prismatic Omen Alice
Choke Alice
Blazing Archon Alice
Blazing Archon Bob

q2. At the moment we read the current cell, exactly one set of

Rotlung Reanimators will be phased in.

Objects with phasing phase in or out at the beginning of

their controller’s turn, effectively toggling between two states.

Accordingly we will arrange for the turn cycle to last 4 turns

for each player when no state change occurs, but just 3 turns

when we need to change state.

IV. THE FULL CONSTRUCTION

Now we will provide the full construction of the Magic: The

Gathering Turing machine and walk through a computational

step. The outline of one step of the computation is as follows

(Bob’s turns are omitted as nothing happens during them):

T1 Alice casts Infest. Turing processing occurs: a white or

green token dies, a new white or green token is created.

T2 Alice casts Cleansing Beam, putting two +1/+1 count-

ers on the side of the tape we are moving away from.

T3 If the Turing machine is remaining in the same state,

Alice casts Coalition Victory. If it is changing state,

Alice casts Soul Snuffers, putting a −1/−1 counter on

each creature.

T4 If the Turing machine is remaining in the same state, this

is the point where Alice casts Soul Snuffers. Otherwise,

the next computational step begins.

A. Beginning a Computational Step and Casting Spells

At the beginning of a computational step, it is Alice’s turn

and she has the card Infest in hand. Her library consists of the

other cards she will cast during the computation (Cleansing

Beam, Coalition Victory, and Soul Snuffers, in that order).

Bob’s hand and library are both empty. The Turing machine

is in its starting state and the tape has already been initialised.

At the start of each of Alice’s turns, she has one card in

hand. She’s forced to cast it due to Bob controlling Wild

Evocation, which reads “At the beginning of each player’s

upkeep, that player reveals a card at random from their hand.

If it’s a land card, the player puts it onto the battlefield.

Otherwise, the player casts it without paying its mana cost

if able.” When the card resolves, it would normally be put

into her graveyard, but Alice is enchanted by Wheel of Sun

and Moon, which causes it to be placed at the bottom of her

library instead, allowing her to redraw it in the future and

keeping the cards she needs to cast in order. After her upkeep

step, Alice proceeds to her draw step and draws the card that

she will cast next turn.

Alice has no choices throughout this process: she does

control one land, but it remains permanently tapped because

of Choke (“Islands don’t untap during their controllers untap

steps”), so she is unable to cast any of the spells she draws

except via Wild Evocation’s ability. Neither player is able to

attack because they both control a Blazing Archon, “Creatures

can’t attack you.”

Bob has no cards in hand and controls Recycle, which reads

(in part) “Skip your draw step”. This prevents Bob from losing

due to drawing from an empty library.

B. Reading the Current Cell

On the first turn of the cycle, Alice is forced to cast Infest,

“All creatures get −2/−2 until end of turn.” This kills one

creature: the tape token at the position of the current read

head, controlled by Bob. This will cause precisely one creature

of Bob’s to trigger – either a Rotlung Reanimator or a

Xathrid Necromancer. Which precise one triggers is based

on that token’s creature type and the machine’s current state,

corresponding to the appropriate rule in the definition of the

(2, 18) UTM. This Reanimator or Necromancer will create a

new 2/2 token to replace the one that died. The new token’s

creature type represents the symbol to be written to the current

cell, and the new token’s colour indicates the direction for the

machine to move: white for left or green for right.

Alice controls Illusory Gains, an Aura which reads “You

control enchanted creature. Whenever a creature enters the

battlefield under an opponent’s control, attach Illusory Gains to

that creature.” Each time one of Bob’s Rotlung Reanimators

or Xathrid Necromancers creates a new token, Illusory

Gains triggers, granting Alice control of the newest token on

the tape, and reverting control of the previous token to Bob.

4

TABLE II
FULL TEXT OF THE ROTLUNG REANIMATORS AND XATHRID NECROMANCERS ENCODING THE (2, 18) UTM

Rogozhin’s program Card text

q1 1 c2 Lq1 Whenever an Aetherborn dies, create a 2/2 white Sliver

q1
−→
1

←−
1 1 Rq1 Whenever a Basilisk dies, create a 2/2 green Elf

q1
←−
1 c2 Lq1 Whenever a Cephalid dies, create a 2/2 white Sliver

q1
−→
1 1 1 Rq1 Whenever a Demon dies, create a 2/2 green Aetherborn

q1
←−
1 1

−→
1 1 Lq1 Whenever an Elf dies, create a 2/2 white Demon

q1 b
←−

b Rq1 Whenever a Faerie dies, create a 2/2 green Harpy

q1
−→

b
←−

b 1 Rq1 Whenever a Giant dies, create a 2/2 green Juggernaut

q1
←−

b b Lq1 Whenever a Harpy dies, create a 2/2 white Faerie

q1
−→

b 1 b Rq1 Whenever an Illusion dies, create a 2/2 green Faerie

q1
←−

b 1

−→

b 1 Lq1 Whenever a Juggernaut dies, create a 2/2 white Illusion
q1 b2 b3 Lq2 Whenever a Kavu dies, create a tapped 2/2 white Leviathan

q1 b3
−→

b 1 Lq2 Whenever a Leviathan dies, create a tapped 2/2 white Illusion

q1 c
−→
1 Lq2 Whenever a Myr dies, create a tapped 2/2 white Basilisk

q1
−→c ←−c Rq1 Whenever a Noggle dies, create a 2/2 green Orc

q1
←−c −→c 1 Lq1 Whenever an Orc dies, create a 2/2 white Pegasus

q1
−→c 1

←−c 1 Rq2 Whenever a Pegasus dies, create a tapped 2/2 green Rhino

q1
←−c 1 HALT Whenever a Rhino dies, create a 2/2 blue Assassin

q1 c2
←−
1 Rq1 Whenever a Sliver dies, create a 2/2 green Cephalid

q2 1
←−
1 Rq2 Whenever an Aetherborn dies, create a 2/2 green Cephalid

q2
−→
1

←−
1 Rq2 Whenever a Basilisk dies, create a 2/2 green Cephalid

q2
←−
1

−→
1 Lq2 Whenever a Cephalid dies, create a 2/2 white Basilisk

q2
−→
1 1

←−
1 1 Rq2 Whenever a Demon dies, create a 2/2 green Elf

q2
←−
1 1 1 Lq2 Whenever an Elf dies, create a 2/2 white Aetherborn

q2 b b2 Rq1 Whenever a Faerie dies, create a tapped 2/2 green Kavu

q2
−→

b
←−

b Rq2 Whenever a Giant dies, create a 2/2 green Harpy

q2
←−

b
−→

b Lq2 Whenever a Harpy dies, create a 2/2 white Giant

q2
−→

b 1

←−

b 1 Rq2 Whenever an Illusion dies, create a 2/2 green Juggernaut

q2
←−

b 1

−→

b Lq2 Whenever a Juggernaut dies, create a 2/2 white Giant
q2 b2 b Rq1 Whenever a Kavu dies, create a tapped 2/2 green Faerie

q2 b3
←−

b 1 Rq2 Whenever a Leviathan dies, create a 2/2 green Juggernaut

q2 c ←−c Rq2 Whenever a Myr dies, create a 2/2 green Orc

q2
−→c ←−c Rq2 Whenever a Noggle dies, create a 2/2 green Orc

q2
←−c −→c Lq2 Whenever an Orc dies, create a 2/2 white Noggle

q2
−→c 1 c2 Rq2 Whenever a Pegasus dies, create a 2/2 green Sliver

q2
←−c 1 c2 Lq1 Whenever a Rhino dies, create a tapped 2/2 white Sliver

q2 c2 c Lq2 Whenever a Sliver dies, create a 2/2 white Myr

So at any point Bob controls all of the tape except for the

most recently written symbol, which is controlled by Alice.

C. Moving Left or Right

If the new token is white, the Turing machine needs to

move left. To do this we need to take two actions: put a

+1/+ 1 counter on all white creatures (move the tape away

from white), and put a −1/−1 counter on all green creatures

(move the tape towards green). We rephrase this instead as:

put two +1/ + 1 counters on all white creatures, and put a

−1/−1 counter on all creatures.

On Alice’s second turn, she casts Cleansing Beam, which

reads “Cleansing Beam deals 2 damage to target creature and

each other creature that shares a color with it.” Bob controls

Privileged Position so none of Bob’s creatures can be targeted

by any spell Alice casts. Alice controls some creatures other

than the tape token, but they have all been granted creature

type Assembly-Worker by a hacked Olivia Voldaren, and

Alice controls a Steely Resolve naming Assembly-Worker

(“Creatures of the chosen type have shroud. (They can’t be

the targets of spells or abilities.)”) This makes it so that the

only legal target for Cleansing Beam is the one tape token

that Alice controls thanks to her Illusory Gains.

Recall that this token is white if we’re moving left, or green

if we’re moving right. Cleansing Beam is about to deal 2

damage to each white creature if we’re moving left, or to

each green creature if we’re moving right. Alice and Bob

each control a copy of Vigor – “If damage would be dealt

to another creature you control, prevent that damage. Put a

+1/+1 counter on that creature for each 1 damage prevented

this way.” So Cleansing Beam ends up putting two +1/+ 1

counters on either each white creature or each green creature.

On the last turn of the cycle, Alice casts Soul Snuffers, a

3/3 black creature which reads “When Soul Snuffers enters the

battlefield, put a −1/−1 counter on each creature.” There are

two copies of Dread of Night hacked to each say “Black

creatures get −1/−1”, which mean that the Soul Snuffers’

triggered ability will kill itself, as well as shrinking every other

5

creature. The creatures comprising the tape have now received

either a single −1/−1 counter, or two +1/+ 1 counters and a

−1/−1 counter.

To ensure that the creatures providing the infrastructure

(such as Rotlung Reanimator) aren’t killed by the succession

of −1/−1 counters each computational step, we arrange that

they also have game colours green, white, red and black,

using Prismatic Lace, “Target permanent becomes the color

or colors of your choice. (This effect lasts indefinitely.)”

Accordingly, each cycle Cleansing Beam will put two +1/+1

counters on them, growing them faster than the −1/−1 counters

shrink them. This applies to each creature except Vigor

itself; to keep each player’s Vigor from dwindling, there is

a Fungus Sliver hacked to read “All Incarnation creatures

have ‘Whenever this creature is dealt damage, put a +1/+ 1

counter on it.’ ”

D. Changing State

The instruction to change state is handled by replacing seven

of Bob’s Rotlung Reanimators with Xathrid Necromancer.

These two cards have very similar text, except that Xathrid

Necromancer only notices Bob’s creatures dying (this is not

a problem, as the active cell of the tape is always controlled

by Bob), and that Xathrid Necromancer creates its token

tapped.

For example, when the q1 program (State A) sees symbol 1,

it writes symbol 18, moves left, and remains in state A. This

is represented by a phasing Rotlung Reanimator under Bob’s

control saying “Whenever Rotlung Reanimator or another

Aetherborn dies, create a 2/2 white Sliver creature token.”

By contrast, when the q1 program sees symbol 11, it

writes symbol 12, moves left, and changes to state B. This is

represented by a phasing Xathrid Necromancer under Bob’s

control saying “Whenever Xathrid Necromancer or another

Kavu creature you control dies, create a tapped 2/2 white

Leviathan creature token.”

In both cases this token is created under Bob’s control on

turn T1, but Alice’s Illusory Gains triggers and grants her

control of it. In the case where it’s tapped, that means at

the beginning of turn T2, it will untap. This causes Alice’s

Mesmeric Orb’s trigger to be put on the stack at the same time

as Bob’s Wild Evocation’s trigger (since no player receives

priority during the untap step). Alice is the active player, so

Alice’s trigger is put on the stack first and then Bob’s [16]; so

the Wild Evocation trigger resolves, forcing Alice to cast and

resolve Cleansing Beam, before the Mesmeric Orb trigger

resolves.

When the Mesmeric Orb trigger does resolve, it tries to

put the Coalition Victory from the top of Alice’s library into

her graveyard. But Wheel of Sun and Moon modifies this

event to put Coalition Victory onto the bottom of her library,

just underneath the Cleansing Beam that’s just resolved.

Once all these triggers are resolved, Alice proceeds to her

draw step. When the state is not changing, she will draw

Coalition Victory at this point, but when the state is changing,

that card is skipped and she moves on to draw Soul Snuffers

in turn T2’s draw step, so she will cast it on turn T3.

The net result of this is that the computation step is 3

turns long for each player when the state is changing, but

4 turns long for each player when the state is not changing. In

the normal 4-turn operation, Bob’s phasing Reanimators and

Necromancers will phase in twice and phase out twice, and be

in the same state on one cycle’s turn T1 as they were in the

previous cycle’s turn T1. But when changing state, they will

have changed phase by the next cycle’s turn T1, switching the

Turing machine’s state.

E. Out of Tape

The Turing tape can be initialised to any desired length

before starting processing. But it is preferable to allow the

machine to run on a simulated infinite tape: in other words,

to assume that any uninitialised tape space contains symbol

3 (the blank symbol in the (2, 18) UTM), represented by

creature type Cephalid. This is accomplished by having the

ends of the currently-initialised tape marked by two special

tokens, one green Lhurgoyf and one white Rat. Suppose we’ve

exhausted all the initialised tape to the left. This means that

the casting of Infest on turn T1 kills the Lhurgoyf rather than

one of the normal tape types. This does not directly trigger

any of the normal Reanimators/Necromancers. Instead, Bob

has another Rotlung Reanimator hacked to read “Whenever

Rotlung Reanimator or another Lhurgoyf dies, create a 2/2

green Lhurgoyf creature token”, and Alice has a Rotlung

Reanimator hacked to read “Whenever Rotlung Reanimator

or another Lhurgoyf dies, create a 2/2 black Cephalid creature

token.” Bob’s trigger will resolve first, then Alice’s.

First, Bob’s Reanimator trigger creates a new Lhurgoyf just

to the left of the current head. (Alice’s Illusory Gains triggers

and gives her control of this new Lhurgoyf, but that will

soon change.) We have one copy of Shared Triumph set to

Lhurgoyf (“Creatures of the chosen type get +1/+1”) so this

token arrives as a 3/3.

Second, Alice’s Reanimator trigger now creates a 2/2 black

Cephalid under Alice’s control. The same two copies of Dread

of Night as before are giving all black creatures −2/−2, so the

black Cephalid will arrive as a 0/0 and immediately die.

The death of this Cephalid triggers one of the regular

phasing Reanimators of Bob’s just as if a tape cell containing

symbol 3 had been read: a new 2/2 token is created and

Illusory Gains moves to that new token. The green Lhurgoyf

token serving as an end-of-tape marker has been recreated one

step over to the left.

The situation for the white Rat representing the right-hand

end of the tape is exactly equivalent. Bob has a Rotlung

Reanimator hacked to read “Whenever Rotlung Reanimator

or another Rat dies, create a 2/2 white Rat creature token”;

Alice has a Rotlung Reanimator hacked to read “Whenever

Rotlung Reanimator or another Rat dies, create a 2/2 black

Cephalid creature token”; and we have another Shared Tri-

umph set to Rat.

6

(This algorithm would be a little more complex if reading

symbol 3 could cause a state change in the (2, 18) UTM, but

thankfully it cannot.)

F. Halting

We choose to encode halting as making Alice win the game.

When the Turing machine doesn’t change state, Alice casts

the card Coalition Victory on her third turn. It reads “You win

the game if you control a land of each basic land type and a

creature of each color.” This normally accomplishes nothing

because she controls no blue creatures (Prismatic Lace has

been used to give her creatures of all the other colours). She

does, however, control one land, and also controls Prismatic

Omen, which reads “Lands you control are every basic land

type in addition to their other types.” Recall that Choke is in

play, preventing her from activating the mana ability of this

land.

When the halt symbol is read (symbol 17 in state A), the

appropriate phasing Reanimator of Bob’s reads “Whenever

Rotlung Reanimator or another Rhino dies, create a 2/2 blue

Assassin creature token.” Alice’s Illusory Gains takes control

of this Assassin token in the usual way in turn T1. She now

meets the condition for Coalition Victory when she casts it

on turn T3, and wins the game.

If the encoded machine does not in fact halt then the game

has entered an unbreakable deterministic infinite loop, which

is specified as a draw by rule 104.4b [16].

V. DISCUSSION

A. Consequences for Computational Theories of Games

This construction establishes that Magic: The Gathering is

the most computationally complex real-world game known in

the literature. In addition to showing that optimal strategic

play in Magic is non-computable, it also shows that merely

evaluating the deterministic consequences of past moves in

Magic is non-computable. The full complexity of optimal

strategic play remains an open question, as do many other

computational aspects of Magic. For example, a player ap-

pears to have infinitely many moves available to them from

some board states of Magic. Whether or not there exists a

real-world game of Magic in which a player has infinitely

many meaningfully different moves available to them has the

potentially to highly impact the way we understand and model

games as a form of computation.

Indeed, this result raises several interesting philosophical

questions about games as a form of computation. Some

authors, such as Demaine and Hearn [9], have sought a formal

framework for modelling games that is strictly sub-Turing.

Unlike the open-world, non-strategic games in which Turing

machines have been constructed before, Magic: The Gathering

is unambiguously a two-player strategic game like such models

attempt to represent. Therefore this result shows that any sub-

Turing model is necessarily inadequate to capture all games.

Quite the opposite: it seems likely that a super-Turing model

of games would be necessary to explain Magic. The naı̈ve

extension of Demaine and Hearn’s Constraint Logic to allow

for unbounded memory appears to be meaningless, although

it’s possible that a clever approach would bring success.

Open Problem 3: Does there exist a generalisation of

Constraint Logic that explains the computational complexity

of Magic: The Gathering?

Although our construction is reducible to the Halting Prob-

lem, the fact that even evaluating a board is non-computable

is strongly suggestive that the complexity of strategic play is

greater than that. We believe there is strong evidence that the

true computational complexity is far higher. In particular, we

conjecture:

Conjecture 4: Playing Magic: The Gathering optimally is

at least as hard as 0(ω).

Whether or not it is possible for there to be a real-world

game whose computational complexity is strictly harder than

0(ω) is an interesting philosophical question. If not, then this

conjecture would imply that Magic: The Gathering is as hard

as it is possible for a real-world game to be.

B. Real-world Playability and Legality

While there are practical difficulties involved with correctly

setting up the necessary board state, such as running out of

space on your table, a sufficiently tenacious player could set

up and execute this construction in a real-world tournament

TABLE III
60-CARD DECKLIST TO PLAY THE TURING MACHINE IN A LEGACY TOURNAMENT

Card Purpose Card Purpose Card Purpose

4 Ancient Tomb Bootstrap 1 Rotlung Reanimator Logic processing 1 Xathrid Necromancer Change state
4 Lotus Petal Bootstrap 1 Cloak of Invisibility Logic processing 1 Mesmeric Orb Change state
4 Grim Monolith Infinite mana device 1 Infest Logic processing 1 Coalition Victory Halting device
4 Power Artifact Infinite mana device 1 Cleansing Beam Logic processing 1 Prismatic Omen Halting device
4 Gemstone Array Infinite mana device 1 Soul Snuffers Logic processing 1 Choke Halting device
4 Staff of Domination Draw rest of deck 1 Illusory Gains Logic processing 1 Recycle Remove choices
1 Memnarch Make token copies 1 Privileged Position Logic processing 1 Blazing Archon Remove choices
1 Stolen Identity Make token copies 1 Steely Resolve Logic processing 1 Djinn Illuminatus Simplify setup
1 Artificial Evolution Edit cards 1 Vigor Logic processing 1 Reito Lantern Simplify setup
1 Olivia Voldaren Edit cards 1 Fungus Sliver Logic processing 1 Claws of Gix Simplify setup
1 Glamerdye Edit cards 1 Dread of Night Logic processing 1 Riptide Replicator Set up tape
1 Prismatic Lace Edit cards 1 Wild Evocation Forced play device 1 Capsize Set up tape
1 Donate Edit card control 1 Wheel of Sun and Moon Forced play device 1 Karn Liberated Cleanup after setup
1 Reality Ripple Edit card phase 1 Shared Triumph Infinite tape device 1 Fathom Feeder Cleanup after setup

7

game of Magic: The Gathering. An example 60-card deck that

is capable of executing this construction on the first turn of

the game and which is legal in the competitive Legacy format

can be seen in Table III.

With the correct draw, the deck uses Ancient Tomb and

three Lotus Petals to play Grim Monolith and Power Arti-

fact and generate unlimited colourless mana, at which point

Staff of Domination draws the rest of the deck and Gem-

stone Array generates unlimited coloured mana. The deck

casts most of the permanents immediately, and uses Stolen

Identity to make token copies of them (using Memnarch

first on the enchantments like Cloak of Invisibility). The

tape is initialised with Riptide Replicator and Capsize. Djinn

Illuminatus or Reito Lantern allow repeated casting of the

text-modification cards, as well as Reality Ripple which sets

the phase of the Rotlung Reanimators and Donate which

gives most permanents to Bob. Once everything is set up,

Steely Resolve is cast, and then Karn Liberated and Capsize

are used to exile all setup permanents and all cards from

Bob’s hand, eventually exiling Capsize and Karn Liberated

themselves. Now no player has any remaining choices except

to let the Turing machine execute.

In addition to the Comprehensive Rules [16], play at sanc-

tioned Magic: The Gathering tournaments is also governed by

the Tournament Rules [17]. Some of these rules, most notably

the ones involving slow play, may effect an individual’s ability

to successfully execute the combo due to concerns about the

sheer amount of time it would take to manually move the

tokens around to simulate a computation on a Turing machine.

This would not be a concern for two agents with sufficiently

high computational power, as the Tournament Rules also

provide a mechanism called “shortcuts” for players to skip

carrying out laborious loops if both players agree on the game

state at the beginning and the end of the shortcut.

VI. CONCLUSION

We have presented a methodology for embedding Ro-

gozhin’s (2, 18) universal Turing machine in a two-player

game of Magic: The Gathering. Consequently, we have shown

that identifying the outcome of a game of Magic in which all

moves are forced for the rest of the game is undecidable. In

addition to solving a decade-old outstanding open problem, in

the process of arriving at our result we showed that Magic:

The Gathering does not fit assumptions commonly made by

computer scientists while modelling games. We conjecture that

optimal play in Magic is far harder than this result alone

implies, and leave the true complexity of Magic and the

reconciliation of Magic with existing theories of games for

future research.

ACKNOWLEDGEMENTS

We are grateful to C-Y. Howe for help simplifying our Tur-

ing machine construction considerably and to Adam Yedidia

for conversations about the design and construction of Turing

machines.

REFERENCES

[1] David Auger and Oliver Teytaud. The frontier of decidability in partially
observable recursive games. International Journal of Foundations of

Computer Science, 2012.
[2] Stella Biderman and Bjørn Kjos-Hanssen. Non-comparable natu-

ral numbers. Theoretical Computer Science Stack Exchange, 2018.
https://cstheory.stackexchange.com/q/41384(version:2018-08-16).

[3] Krishnendu Chatterjee and Rasmus Ibsen-Jensen. The complexity of
deciding legality of a single step of Magic: The Gathering. In 22nd

European Conference on Artificial Intelligence, 2016.
[4] Alex Churchill. Magic: The Gathering is Turing complete v5, 2012.

https://www.toothycat.net/∼hologram/Turing/.
[5] Alex Churchill et al. Magic is Turing complete (the Turing machine

combo), 2014. http://tinyurl.com/pv3n2lg.
[6] Peter I. Cowling Colin D. Ward and Edward J. Powley. Ensemble deter-

minization in Monte Carlo tree search for the imperfect information card
game Magic: The Gathering. In IEEE Transactions on Computational

Intelligence and AI in Games, volume 4, 2012.
[7] Michael J. Coulombe and Jayson Lynch. Cooperating in video games?

Impossible! Undecidability of team multiplayer games. In 9th Interna-

tional Conference on Fun with Algorithms, 2018.
[8] Erik D. Demaine and Robert A. Hearn. Playing games with algorithms:

algorithmic combinatorial game theory. In 26th Symp. on Mathematical

Foundations in Computer Science, pages 18–32, 2001.
[9] Erik D. Demaine and Robert A. Hearn. Constraint logic: A uniform

framework for modeling computation as games. In 2008 23rd Annual

IEEE Conference on Computational Complexity, pages 149–162, 2008.
[10] Erik D. Demaine and Robert A. Hearn. Games, Puzzles, and Computa-

tion. CRC Press, 2009.
[11] Alexander Esche. Mathematical Programming and Magic: The Gather-

ing. PhD thesis, Northern Illinois University, 2018.
[12] Eugenio Fortanely. Personal communication, 2018.
[13] H. G. Rice. Classes of recursively enumerable sets and their decision

problems. Trans. Amer. Math. Soc., 74:358366, 1953.
[14] Yurii Rogozhin. Small universal Turing machines. Theoretical Computer

Science, 168(2):215–240, 1996.
[15] Colin D. Ward and Peter I. Cowling. Monte Carlo search applied to

card selection in Magic: The Gathering. In CIG’09 Proceedings of the

5th international conference on Computational Intelligence and Games,
pages 9–16, 2009.

[16] Wizards of the Coast. Magic: The Gath-
ering comprehensive rules, Aug 2018.
https://magic.wizards.com/en/game-info/gameplay/rules-and-formats/rules.

[17] Wizards of the Coast. Magic: The
Gathering tournament rules, Aug 2018.
https://wpn.wizards.com/sites/wpn/files/attachements/mtg mtr 21jan19 en.pdf.

8

https://cstheory.stackexchange.com/q/41384 (version: 2018-08-16)
https://www.toothycat.net/~hologram/Turing/
http://tinyurl.com/pv3n2lg
https://magic.wizards.com/en/game-info/gameplay/rules-and-formats/rules
https://wpn.wizards.com/sites/wpn/files/attachements/mtg_mtr_21jan19_en.pdf

	I Introduction
	I-A Previous Work
	I-B Our Contribution
	I-C Overview

	II Preliminaries
	II-A Previous Magic Turing Machines

	III An Overview of the Construction
	III-A The Tape
	III-B The Controller
	III-C The Read/Write Head
	III-D Adding a Second State

	IV The Full Construction
	IV-A Beginning a Computational Step and Casting Spells
	IV-B Reading the Current Cell
	IV-C Moving Left or Right
	IV-D Changing State
	IV-E Out of Tape
	IV-F Halting

	V Discussion
	V-A Consequences for Computational Theories of Games
	V-B Real-world Playability and Legality

	VI Conclusion
	References

